Model-based clustering of time-course RNA-seq data
نویسندگان
چکیده
The next generation sequencing technology (RNA-seq) provides absolute quantification of gene expression using counts of read. Transcriptome studies are switching to rely on RNA-seq rather than microarrays since RNA-seq has higher sensitivity and dynamic range, with lower technical variation and thus higher precision than microarrays. Limited work has been done on expression analysis of longitudinal RNA-seq data to account for the time-dependence nature of the count data with over-dispersion property. Functional clustering is an important method for examining gene expression patterns and thus discovering co-expressed genes to better understand the biological systems. We propose a model-based clustering method for identifying gene expression patterns using time-course RNA-seq data. A timecourse genomic dataset is employed for illustration.
منابع مشابه
A Graph-Based Clustering Approach to Identify Cell Populations in Single-Cell RNA Sequencing Data
Introduction: The emergence of single-cell RNA-sequencing (scRNA-seq) technology has provided new information about the structure of cells, and provided data with very high resolution of the expression of different genes for each cell at a single time. One of the main uses of scRNA-seq is data clustering based on expressed genes, which sometimes leads to the detection of rare cell populations. ...
متن کاملA Graph-Based Clustering Approach to Identify Cell Populations in Single-Cell RNA Sequencing Data
Introduction: The emergence of single-cell RNA-sequencing (scRNA-seq) technology has provided new information about the structure of cells, and provided data with very high resolution of the expression of different genes for each cell at a single time. One of the main uses of scRNA-seq is data clustering based on expressed genes, which sometimes leads to the detection of rare cell populations. ...
متن کاملClustering of Short Read Sequences for de novo Transcriptome Assembly
Given the importance of transcriptome analysis in various biological studies and considering thevast amount of whole transcriptome sequencing data, it seems necessary to develop analgorithm to assemble transcriptome data. In this study we propose an algorithm fortranscriptome assembly in the absence of a reference genome. First, the contiguous sequencesare generated using de Bruijn graph with d...
متن کاملAssessment of data transformations for model-based clustering of RNA-Seq data
Quality control, global biases, normalization, and analysis methods for RNA-Seq data are quite different than those for microarray-based studies. The assumption of normality is reasonable for microarray based gene expression data; however, RNA-Seq data tend to follow an over-dispersed Poisson or negative binomial distribution. Little research has been done to assess how data transformations imp...
متن کاملnetSmooth: Network-smoothing based imputation for single cell RNA-seq
Single cell RNA-seq (scRNA-seq) experiments suffer from a range of characteristic technical biases, such as dropouts (zero or near zero counts) and high variance. Current analysis methods rely on imputing missing values by various means of local averaging or regression, often amplifying biases inherent in the data. We present netSmooth, a network-diffusion based method that uses priors for the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013